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How to Use the CFA 
Program Curriculum

The CFA® Program exams measure your mastery of the core knowledge, skills, and 
abilities required to succeed as an investment professional. These core competencies 
are the basis for the Candidate Body of Knowledge (CBOK™). The CBOK consists of 
four components:

	■ A broad outline that lists the major CFA Program topic areas (www.
cfainstitute.org/programs/cfa/curriculum/cbok)

	■ Topic area weights that indicate the relative exam weightings of the top-level 
topic areas (www.cfainstitute.org/programs/cfa/curriculum)

	■ Learning outcome statements (LOS) that advise candidates about the spe-
cific knowledge, skills, and abilities they should acquire from curriculum 
content covering a topic area: LOS are provided in candidate study ses-
sions and at the beginning of each block of related content and the specific 
lesson that covers them. We encourage you to review the information about 
the LOS on our website (www.cfainstitute.org/programs/cfa/curriculum/
study-sessions), including the descriptions of LOS “command words” on the 
candidate resources page at www.cfainstitute.org.

	■ The CFA Program curriculum that candidates receive upon exam 
registration

Therefore, the key to your success on the CFA exams is studying and understanding 
the CBOK. You can learn more about the CBOK on our website: www.cfainstitute.
org/programs/cfa/curriculum/cbok. 

The entire curriculum, including the practice questions, is the basis for all exam 
questions and is selected or developed specifically to teach the knowledge, skills, and 
abilities reflected in the CBOK.

ERRATA

The curriculum development process is rigorous and includes multiple rounds of 
reviews by content experts. Despite our efforts to produce a curriculum that is free 
of errors, there are instances where we must make corrections. Curriculum errata are 
periodically updated and posted by exam level and test date online on the Curriculum 
Errata webpage (www.cfainstitute.org/en/programs/submit-errata). If you believe you 
have found an error in the curriculum, you can submit your concerns through our 
curriculum errata reporting process found at the bottom of the Curriculum Errata 
webpage. 

DESIGNING YOUR PERSONAL STUDY PROGRAM

An orderly, systematic approach to exam preparation is critical. You should dedicate 
a consistent block of time every week to reading and studying. Review the LOS both 
before and after you study curriculum content to ensure that you have mastered the 
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applicable content and can demonstrate the knowledge, skills, and abilities described 
by the LOS and the assigned reading. Use the LOS self-check to track your progress 
and highlight areas of weakness for later review.

Successful candidates report an average of more than 300 hours preparing for each 
exam. Your preparation time will vary based on your prior education and experience, 
and you will likely spend more time on some study sessions than on others. 

CFA INSTITUTE LEARNING ECOSYSTEM (LES)

Your exam registration fee includes access to the CFA Program Learning Ecosystem 
(LES). This digital learning platform provides access, even offline, to all of the curricu-
lum content and practice questions and is organized as a series of short online lessons 
with associated practice questions. This tool is your one-stop location for all study 
materials, including practice questions and mock exams, and the primary method by 
which CFA Institute delivers your curriculum experience. The LES offers candidates 
additional practice questions to test their knowledge, and some questions in the LES 
provide a unique interactive experience.

FEEDBACK

Please send any comments or feedback to info@cfainstitute.org, and we will review 
your suggestions carefully. 
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The Time Value of Money
by Richard A. DeFusco, PhD, CFA, Dennis W. McLeavey, DBA, CFA, Jerald 
E. Pinto, PhD, CFA, and David E. Runkle, PhD, CFA.

Richard A. DeFusco, PhD, CFA, is at the University of Nebraska-Lincoln (USA). Dennis W. 
McLeavey, DBA, CFA, is at the University of Rhode Island (USA). Jerald E. Pinto, PhD, 
CFA, is at CFA Institute (USA). David E. Runkle, PhD, CFA, is at Jacobs Levy Equity 
Management (USA).

LEARNING OUTCOME
Mastery The candidate should be able to:

interpret interest rates as required rates of return, discount rates, or 
opportunity costs
explain an interest rate as the sum of a real risk-free rate and 
premiums that compensate investors for bearing distinct types of 
risk
calculate and interpret the future value (FV) and present value (PV) 
of a single sum of money, an ordinary annuity, an annuity due, a 
perpetuity (PV only), and a series of unequal cash flows
demonstrate the use of a time line in modeling and solving time 
value of money problems
calculate the solution for time value of money problems with 
different frequencies of compounding
calculate and interpret the effective annual rate, given the stated 
annual interest rate and the frequency of compounding

INTRODUCTION

As individuals, we often face decisions that involve saving money for a future use, or 
borrowing money for current consumption. We then need to determine the amount 
we need to invest, if we are saving, or the cost of borrowing, if we are shopping for 
a loan. As investment analysts, much of our work also involves evaluating transac-
tions with present and future cash flows. When we place a value on any security, for 
example, we are attempting to determine the worth of a stream of future cash flows. 
To carry out all the above tasks accurately, we must understand the mathematics of 
time value of money problems. Money has time value in that individuals value a given 
amount of money more highly the earlier it is received. Therefore, a smaller amount 
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Learning Module 1	 The Time Value of Money4

of money now may be equivalent in value to a larger amount received at a future date. 
The time value of money as a topic in investment mathematics deals with equivalence 
relationships between cash flows with different dates. Mastery of time value of money 
concepts and techniques is essential for investment analysts.

The reading1 is organized as follows: Section 2 introduces some terminology used 
throughout the reading and supplies some economic intuition for the variables we will 
discuss. Section 3 tackles the problem of determining the worth at a future point in 
time of an amount invested today. Section 4 addresses the future worth of a series of 
cash flows. These two sections provide the tools for calculating the equivalent value at 
a future date of a single cash flow or series of cash flows. Sections 5 and 6 discuss the 
equivalent value today of a single future cash flow and a series of future cash flows, 
respectively. In Section 7, we explore how to determine other quantities of interest 
in time value of money problems.

INTEREST RATES

interpret interest rates as required rates of return, discount rates, or 
opportunity costs
explain an interest rate as the sum of a real risk-free rate and 
premiums that compensate investors for bearing distinct types of 
risk

In this reading, we will continually refer to interest rates. In some cases, we assume 
a particular value for the interest rate; in other cases, the interest rate will be the 
unknown quantity we seek to determine. Before turning to the mechanics of time 
value of money problems, we must illustrate the underlying economic concepts. In 
this section, we briefly explain the meaning and interpretation of interest rates.

Time value of money concerns equivalence relationships between cash flows 
occurring on different dates. The idea of equivalence relationships is relatively simple. 
Consider the following exchange: You pay $10,000 today and in return receive $9,500 
today. Would you accept this arrangement? Not likely. But what if you received the 
$9,500 today and paid the $10,000 one year from now? Can these amounts be considered 
equivalent? Possibly, because a payment of $10,000 a year from now would probably 
be worth less to you than a payment of $10,000 today. It would be fair, therefore, 
to discount the $10,000 received in one year; that is, to cut its value based on how 
much time passes before the money is paid. An interest rate, denoted r, is a rate of 
return that reflects the relationship between differently dated cash flows. If $9,500 
today and $10,000 in one year are equivalent in value, then $10,000 − $9,500 = $500 
is the required compensation for receiving $10,000 in one year rather than now. The 
interest rate—the required compensation stated as a rate of return—is $500/$9,500 
= 0.0526 or 5.26 percent.

Interest rates can be thought of in three ways. First, they can be considered required 
rates of return—that is, the minimum rate of return an investor must receive in order 
to accept the investment. Second, interest rates can be considered discount rates. In 
the example above, 5.26 percent is that rate at which we discounted the $10,000 future 
amount to find its value today. Thus, we use the terms “interest rate” and “discount 
rate” almost interchangeably. Third, interest rates can be considered opportunity costs. 

1  Examples in this reading and other readings in quantitative methods at Level I were updated in 2018 by 
Professor Sanjiv Sabherwal of the University of Texas, Arlington.
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Interest Rates 5

An opportunity cost is the value that investors forgo by choosing a particular course 
of action. In the example, if the party who supplied $9,500 had instead decided to 
spend it today, he would have forgone earning 5.26 percent on the money. So we can 
view 5.26 percent as the opportunity cost of current consumption.

Economics tells us that interest rates are set in the marketplace by the forces of sup-
ply and demand, where investors are suppliers of funds and borrowers are demanders 
of funds. Taking the perspective of investors in analyzing market-determined interest 
rates, we can view an interest rate r as being composed of a real risk-free interest rate 
plus a set of four premiums that are required returns or compensation for bearing 
distinct types of risk:

	 r = Real risk-free interest rate + Inflation premium + Default risk premium + 
Liquidity premium + Maturity premium

	■ The real risk-free interest rate is the single-period interest rate for a com-
pletely risk-free security if no inflation were expected. In economic theory, 
the real risk-free rate reflects the time preferences of individuals for current 
versus future real consumption.

	■ The inflation premium compensates investors for expected inflation and 
reflects the average inflation rate expected over the maturity of the debt. 
Inflation reduces the purchasing power of a unit of currency—the amount 
of goods and services one can buy with it. The sum of the real risk-free 
interest rate and the inflation premium is the nominal risk-free interest 
rate.2 Many countries have governmental short-term debt whose interest 
rate can be considered to represent the nominal risk-free interest rate in that 
country. The interest rate on a 90-day US Treasury bill (T-bill), for example, 
represents the nominal risk-free interest rate over that time horizon.3 US 
T-bills can be bought and sold in large quantities with minimal transaction 
costs and are backed by the full faith and credit of the US government.

	■ The default risk premium compensates investors for the possibility that the 
borrower will fail to make a promised payment at the contracted time and in 
the contracted amount.

	■ The liquidity premium compensates investors for the risk of loss relative 
to an investment’s fair value if the investment needs to be converted to cash 
quickly. US T-bills, for example, do not bear a liquidity premium because 
large amounts can be bought and sold without affecting their market price. 
Many bonds of small issuers, by contrast, trade infrequently after they are 
issued; the interest rate on such bonds includes a liquidity premium reflect-
ing the relatively high costs (including the impact on price) of selling a 
position.

	■ The maturity premium compensates investors for the increased sensitivity 
of the market value of debt to a change in market interest rates as maturity 
is extended, in general (holding all else equal). The difference between the 

2  Technically, 1 plus the nominal rate equals the product of 1 plus the real rate and 1 plus the inflation rate. 
As a quick approximation, however, the nominal rate is equal to the real rate plus an inflation premium. 
In this discussion we focus on approximate additive relationships to highlight the underlying concepts.
3  Other developed countries issue securities similar to US Treasury bills. The French government issues 
BTFs or negotiable fixed-rate discount Treasury bills (Bons du Trésor àtaux fixe et à intérêts précomptés) 
with maturities of up to one year. The Japanese government issues a short-term Treasury bill with matur-
ities of 6 and 12 months. The German government issues at discount both Treasury financing paper 
(Finanzierungsschätze des Bundes or, for short, Schätze) and Treasury discount paper (Bubills) with 
maturities up to 24 months. In the United Kingdom, the British government issues gilt-edged Treasury 
bills with maturities ranging from 1 to 364 days. The Canadian government bond market is closely related 
to the US market; Canadian Treasury bills have maturities of 3, 6, and 12 months.
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interest rate on longer-maturity, liquid Treasury debt and that on short-term 
Treasury debt reflects a positive maturity premium for the longer-term debt 
(and possibly different inflation premiums as well).

Using this insight into the economic meaning of interest rates, we now turn to a 
discussion of solving time value of money problems, starting with the future value 
of a single cash flow.

FUTURE VALUE OF A SINGLE CASH FLOW

calculate and interpret the future value (FV) and present value (PV) 
of a single sum of money, an ordinary annuity, an annuity due, a 
perpetuity (PV only), and a series of unequal cash flows
demonstrate the use of a time line in modeling and solving time 
value of money problems

In this section, we introduce time value associated with a single cash flow or lump-sum 
investment. We describe the relationship between an initial investment or present 
value (PV), which earns a rate of return (the interest rate per period) denoted as r, 
and its future value (FV), which will be received N years or periods from today.

The following example illustrates this concept. Suppose you invest $100 (PV = 
$100) in an interest-bearing bank account paying 5 percent annually. At the end of 
the first year, you will have the $100 plus the interest earned, 0.05 × $100 = $5, for a 
total of $105. To formalize this one-period example, we define the following terms:

	 PV = present value of the investment

	 FVN = future value of the investment N periods from today

	 r = rate of interest per period

For N = 1, the expression for the future value of amount PV is
	FV1 = PV(1 + r)  	  (1)

For this example, we calculate the future value one year from today as FV1 = $100(1.05) 
= $105.

Now suppose you decide to invest the initial $100 for two years with interest 
earned and credited to your account annually (annual compounding). At the end of 
the first year (the beginning of the second year), your account will have $105, which 
you will leave in the bank for another year. Thus, with a beginning amount of $105 
(PV = $105), the amount at the end of the second year will be $105(1.05) = $110.25. 
Note that the $5.25 interest earned during the second year is 5 percent of the amount 
invested at the beginning of Year 2.

Another way to understand this example is to note that the amount invested at 
the beginning of Year 2 is composed of the original $100 that you invested plus the 
$5 interest earned during the first year. During the second year, the original principal 
again earns interest, as does the interest that was earned during Year 1. You can see 
how the original investment grows:

Original investment $100.00
Interest for the first year ($100 × 0.05) 5.00
Interest for the second year based on original investment ($100 × 0.05) 5.00

3



Future Value of a Single Cash Flow 7

Interest for the second year based on interest earned in the first year (0.05 × 
$5.00 interest on interest) 0.25

   Total $110.25

The $5 interest that you earned each period on the $100 original investment is known 
as simple interest (the interest rate times the principal). Principal is the amount of 
funds originally invested. During the two-year period, you earn $10 of simple interest. 
The extra $0.25 that you have at the end of Year 2 is the interest you earned on the 
Year 1 interest of $5 that you reinvested.

The interest earned on interest provides the first glimpse of the phenomenon 
known as compounding. Although the interest earned on the initial investment is 
important, for a given interest rate it is fixed in size from period to period. The com-
pounded interest earned on reinvested interest is a far more powerful force because, 
for a given interest rate, it grows in size each period. The importance of compounding 
increases with the magnitude of the interest rate. For example, $100 invested today 
would be worth about $13,150 after 100 years if compounded annually at 5 percent, 
but worth more than $20 million if compounded annually over the same time period 
at a rate of 13 percent.

To verify the $20 million figure, we need a general formula to handle compounding 
for any number of periods. The following general formula relates the present value of 
an initial investment to its future value after N periods:

	FVN = PV(1 + r)N  	  (2)

where r is the stated interest rate per period and N is the number of compounding 
periods. In the bank example, FV2 = $100(1 + 0.05)2 = $110.25. In the 13 percent 
investment example, FV100 = $100(1.13)100 = $20,316,287.42.

The most important point to remember about using the future value equation is 
that the stated interest rate, r, and the number of compounding periods, N, must be 
compatible. Both variables must be defined in the same time units. For example, if 
N is stated in months, then r should be the one-month interest rate, unannualized.

A time line helps us to keep track of the compatibility of time units and the interest 
rate per time period. In the time line, we use the time index t to represent a point in 
time a stated number of periods from today. Thus the present value is the amount 
available for investment today, indexed as t = 0. We can now refer to a time N periods 
from today as t = N. The time line in Exhibit 1 shows this relationship.

Exhibit 1: The Relationship between an Initial Investment, PV, and Its Future 
Value, FV

0 1  2  3 ... N – 1 N

PV FVN = PV(1 + r)N

In Exhibit 1, we have positioned the initial investment, PV, at t = 0. Using Equation 
2, we move the present value, PV, forward to t = N by the factor (1 + r)N. This factor 
is called a future value factor. We denote the future value on the time line as FV and 
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position it at t = N. Suppose the future value is to be received exactly 10 periods from 
today’s date (N = 10). The present value, PV, and the future value, FV, are separated 
in time through the factor (1 + r)10.

The fact that the present value and the future value are separated in time has 
important consequences:

	■ We can add amounts of money only if they are indexed at the same point in 
time.

	■ For a given interest rate, the future value increases with the number of 
periods.

	■ For a given number of periods, the future value increases with the interest 
rate.

To better understand these concepts, consider three examples that illustrate how 
to apply the future value formula.

EXAMPLE 1

The Future Value of a Lump Sum with Interim Cash 
Reinvested at the Same Rate

1.	 You are the lucky winner of your state’s lottery of $5 million after taxes. 
You invest your winnings in a five-year certificate of deposit (CD) at a local 
financial institution. The CD promises to pay 7 percent per year compound-
ed annually. This institution also lets you reinvest the interest at that rate for 
the duration of the CD. How much will you have at the end of five years if 
your money remains invested at 7 percent for five years with no withdraw-
als?

Solution: 
To solve this problem, compute the future value of the $5 million investment 
using the following values in Equation 2:

	​​

PV  =  $5, 000, 000

​  

r  =  7 %   =  0.07

​  
N  =  5

​ ​FV​ N​​  =  PV ​​(​​1 + r​)​​​​ N​​  
= $5,000,000 ​​(​​1.07​)​​​​ 5​

​  

= $5,000,000​ ​(​​1.402552​)​​ ​

​   

= $7,012,758.65

  ​​

At the end of five years, you will have $7,012,758.65 if your money remains 
invested at 7 percent with no withdrawals.

In this and most examples in this reading, note that the factors are reported at six 
decimal places but the calculations may actually reflect greater precision. For exam-
ple, the reported 1.402552 has been rounded up from 1.40255173 (the calculation is 
actually carried out with more than eight decimal places of precision by the calculator 
or spreadsheet). Our final result reflects the higher number of decimal places carried 
by the calculator or spreadsheet.4

4  We could also solve time value of money problems using tables of interest rate factors. Solutions using 
tabled values of interest rate factors are generally less accurate than solutions obtained using calculators 
or spreadsheets, so practitioners prefer calculators or spreadsheets.
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EXAMPLE 2

The Future Value of a Lump Sum with No Interim Cash

1.	 An institution offers you the following terms for a contract: For an invest-
ment of ¥2,500,000,  the institution promises to pay you a lump sum six 
years from now at an 8 percent annual interest rate. What future amount 
can you expect?

Solution: 
Use the following data in Equation 2 to find the future value:

	​​

PV  =  ¥2, 500, 000

​  

r  =  8 %   =  0.08

​  
N  =  6

​ ​FV​ N​​  =  PV ​​(​​1 + r​)​​​​ N​​  
= ¥2, 500, 000 ​​(​​1.08​)​​​​ 6​

​  

= ¥2, 500, 000​ ​(​​1.586874​)​​ ​

​   

= ¥3, 967, 186

  ​​

You can expect to receive ¥3,967,186 six years from now.

Our third example is a more complicated future value problem that illustrates the 
importance of keeping track of actual calendar time.

EXAMPLE 3

The Future Value of a Lump Sum

1.	 A pension fund manager estimates that his corporate sponsor will make 
a $10 million contribution five years from now. The rate of return on plan 
assets has been estimated at 9 percent per year. The pension fund manager 
wants to calculate the future value of this contribution 15 years from now, 
which is the date at which the funds will be distributed to retirees. What is 
that future value?

Solution:
By positioning the initial investment, PV, at t = 5, we can calculate the future 
value of the contribution using the following data in Equation 2:

	​​

PV  =  $10 million

​  

r  =  9 %   =  0.09

​  

N  =  10

​ ​FV​ N​​  =  PV ​​(​​1 + r​)​​​​ N​​  
= $10,000,000 ​​(​​1.09​)​​​​ 10​

​  

= $10,000,000​ ​(​​2.367364​)​​ ​

​   

= $23,673,636.75

  ​​

This problem looks much like the previous two, but it differs in one im-
portant respect: its timing. From the standpoint of today (t = 0), the future 
amount of $23,673,636.75 is 15 years into the future. Although the future 
value is 10 years from its present value, the present value of $10 million will 
not be received for another five years.

​
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Exhibit 2: The Future Value of a Lump Sum, Initial Investment Not at 
t = 0

​

As Exhibit 2 shows, we have followed the convention of indexing today 
as t = 0 and indexing subsequent times by adding 1 for each period. The 
additional contribution of $10 million is to be received in five years, so it is 
indexed as t = 5 and appears as such in the figure. The future value of the 
investment in 10 years is then indexed at t = 15; that is, 10 years following 
the receipt of the $10 million contribution at t = 5. Time lines like this one 
can be extremely useful when dealing with more-complicated problems, 
especially those involving more than one cash flow.

In a later section of this reading, we will discuss how to calculate the value today 
of the $10 million to be received five years from now. For the moment, we can use 
Equation 2. Suppose the pension fund manager in Example 3 above were to receive 
$6,499,313.86 today from the corporate sponsor. How much will that sum be worth 
at the end of five years? How much will it be worth at the end of 15 years?

	​​

PV  =  $6,499,313.86

​  

r  =  9 %   =  0.09

​  

N  =  5

​ ​FV​ N​​  =  PV ​​(​​1 + r​)​​​​ N​​  
= $6,499,313.86 ​​(​​1.09​)​​​​ 5​

​  

= $6,499,313.86​ ​(​​1.538624​)​​ ​

​   

= $10,000,000 at the five-year mark

​​

and

	​​

PV  =  $6,499,313.86

​  

r  =  9 %   =  0.09

​  

N  =  15

​ ​FV​ N​​  =  PV ​​(​​1 + r​)​​​​ N​​  
= $6,499,313.86 ​​(​​1.09​)​​​​ 15​

​   

= $6,499,313.86​ ​(​​3.642482​)​​ ​

​   

= $23,673,636.74 at the 15-year mark

​​

These results show that today’s present value of about $6.5 million becomes $10 
million after five years and $23.67 million after 15 years.

NON-ANNUAL COMPOUNDING (FUTURE VALUE)

calculate the solution for time value of money problems with 
different frequencies of compounding

4
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